用Transformer完全替代CNN——ViT

这里将介绍一篇我认为是比较新颖的一篇文章 ——《An Image Is Worth 16X16 Words: Transformers for Image Recognition at Scale》 。因为还是 ICLR 2021 under review,所以作者目前还是匿名的,但是看其实验用到的TPU,能够大概猜出应该是Google爸爸的文章(看着实验的配置,不得不感慨钞能力的力量)。

1. Story

近年来,Transformer已经成了NLP领域的标准配置,但是CV领域还是CNN(如ResNet, DenseNet等)占据了绝大多数的SOTA结果。

最近CV界也有很多文章将transformer迁移到CV领域,这些文章总的来说可以分为两个大类:

将self-attention机制与常见的CNN架构结合; 用self-attention机制完全替代CNN。

本文采用的也是第2种思路。虽然已经有很多工作用self-attention完全替代CNN,且在理论上效率比较高,但是它们用了特殊的attention机制,无法从硬件层面加速,所以目前CV领域的SOTA结果还是被CNN架构所占据。

文章不同于以往工作的地方,就是尽可能地将NLP领域的transformer不作修改地搬到CV领域来。但是NLP处理的语言数据是序列化的,而CV中处理的图像数据是三维的(长、宽和channels)。

所以我们需要一个方式将图像这种三维数据转化为序列化的数据。文章中,图像被切割成一个个patch,这些patch按照一定的顺序排列,就成了序列化的数据。(具体将在下面讲述)

在实验中,作者发现,在中等规模的数据集上(例如ImageNet),transformer模型的表现不如ResNets;而当数据集的规模扩大,transformer模型的效果接近或者超过了目前的一些SOTA结果。作者认为是大规模的训练可以鼓励transformer学到CNN结构所拥有的translation equivariance (解释看这里) 和locality.

2. Model

... Vision Transformer (ViT)结构示意图

模型的结构其实比较简单,可以分成以下几个部分来理解:

a. 将图像转化为序列化数据

作者采用了了一个比较简单的方式。如下图所示。首先将图像分割成一个个patch,然后将每个patch reshape成一个向量,得到所谓的flattened patch。

具体地,如果图片是维的,用大小的patch去分割图片可以得到个patch,那么每个patch的shape就是,转化为向量后就是维的向量,将个patch reshape后的向量concat在一起就得到了一个Nx(P^2 C) 的二维矩阵,相当于NLP中输入transformer的词向量。

... 分割图像得到patch

从上面的过程可以看出,当patch的大小变化时(即P变化时),每个patch reshape后得到的维向量的长度也会变化。为了避免模型结构受到patch size的影响,作者对上述过程得到的flattened patches向量做了Linear Projection(如下图所示),将不同长度的flattened patch向量转化为固定长度的向量(记做维向量)。

... 对flattened patches做linear projection

综上,原本维的图片被转化为了个维的向量(或者一个维的二维矩阵)。

b. Position embedding

... positiion embedding示意图

由于transformer模型本身是没有位置信息的,和NLP中一样,我们需要用position embedding将位置信息加到模型中去。

如上图所示1,编号有0-9的紫色框表示各个位置的position embedding,而紫色框旁边的粉色框则是经过linear projection之后的flattened patch向量。文中采用将position embedding(即图中紫色框)和patch embedding(即图中粉色框)相加的方式结合position信息。

c. Learnable embedding

...

如果大家仔细看上图,就会发现带星号的粉色框(即0号紫色框右边的那个)不是通过某个patch产生的。这个是一个learnable embedding(记作),其作用类似于BERT中的[class] token。在BERT中,[class] token经过encoder后对应的结果作为整个句子的表示;类似地,这里经过encoder后对应的结果也作为整个图的表示。

至于为什么BERT或者这篇文章的ViT要多加一个token呢?因为如果人为地指定一个embedding(例如本文中某个patch经过Linear Projection得到的embedding)经过encoder得到的结果作为整体的表示,则不可避免地会使得整体表示偏向于这个指定embedding的信息(例如图像的表示偏重于反映某个patch的信息)。而这个新增的token没有语义信息(即在句子中与任何的词无关,在图像中与任何的patch无关),所以不会造成上述问题,能够比较公允地反映全图的信息。

d. Transformer encoder

...


Transformer Encoder结构和NLP中transformer结构基本上相同,所以这里只给出其结构图,和公式化的计算过程,也是顺便用公式表达了之前所说的几个部分内容。

Transformer Encoder的结构如下图所示:

... Transformer Encoder结构图

对于Encoder的第层,记其输入为,输出为,则计算过程为:

...

其中MSA为Multi-Head Self-Attention(即Transformer Encoder结构图中的绿色框),MLP为Multi-Layer Perceptron(即Transformer Encoder结构图中的蓝色框),LN为Layer Norm(即Transformer Encoder结构图中的黄色框)。

Encoder第一层的输入 是通过下面的公式得到的:

...

其中即为Linear Projection后的patch embedding(都是维),右乘维的矩阵表示Linear Projection,得到的都是维向量;这个维向量和同样是维向量的concat就得到了维矩阵。加上个维position embedding拼成的维矩阵,即得到了encoder的原始输入。

3. 混合结构

文中还提出了一个比较有趣的解决方案,将transformer和CNN结合,即将ResNet的中间层的feature map作为transformer的输入。

和之前所说的将图片分成patch然后reshape成sequence不同的是,在这种方案中,作者直接将ResNet某一层的feature map reshape成sequence,再通过Linear Projection变为Transformer输入的维度,然后直接输入进Transformer中。

4. Fine-tuning过程中高分辨率图像的处理

在Fine-tuning到下游任务时,当图像的分辨率增大时(即图像的长和宽增大时),如果保持patch大小不变,得到的patch个数将增加(记分辨率增大后新的patch个数为 )。但是由于在pretrain时,position embedding的个数和pretrain时分割得到的patch个数(即上文中的)相同。则多出来的个positioin embedding在pretrain中是未定义或者无意义的。

为了解决这个问题,文章中提出用2D插值的方法,基于原图中的位置信息,将pretrain中的个position embedding插值成个。这样再得到个position embedding的同时也保证了position embedding的语义信息。

5. 实验

实验部分由于涉及到的细节较多就不具体介绍了,大家如果感兴趣可以参看原文。(不得不说Google的实验能力和钞能力不是一般人能比的...)

主要的实验结论在story中就已经介绍过了,这里复制粘贴一下:在中等规模的数据集上(例如ImageNet),transformer模型的表现不如ResNets;而当数据集的规模扩大,transformer模型的效果接近或者超过了目前的一些SOTA结果。

比较有趣的是,作者还做了很多其他的分析来解释transfomer的合理性。大家如果感兴趣也可以参看原文,这里放几张文章中的图。

... ...